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INTRODUCTION 

This annual summary report describes research performed from 1 August 1991 
through 14 August 1992 with support from ONR under grant N00014-89-J-1003. 
The following projects are discussed in this report: 

I. Nonlinear Rayleigh Waves 

II. Finite Amplitude Pulses in Liquids with Strong Absorption 

III. Reflection of a Focused Beam from a Curved Target 

IV. Finite Amplitude Propagation in a Sound Velocity Channel 

V. Second Harmonic Generation in Pekeris Waveguides 

VI. Finite Amplitude Propagation in Multiple Waveguide Modes 

VII. Cooperative Radiation and Scattering of Sound by Bubbles 

VIII. Water Fountains Produced by Intense Standing Waves in Air 

IX. Spark-Source Lithotripter Pulses 

Contributions to these projects were made by the following individuals: 

Senior Personnel 

• M. F. Hamilton, principal investigator 

• Yu. A. Il'insky, visiting scientist 

• E. A. Zabolotskaya, visiting scientist 

Graduate Students 

• M. A. Averkiou, Ph.D. student in Mechanical Engineering 

• C. E. Bruch, M.A. student in Physics 

• Y.-S. Lee, Ph.D. student in Mechanical Engineering 

• D. E. Reckamp, M.S. student in Mechanical Engineering 

• D. J. Shull, M.S. student in Electrical Engineering 

• T. W. VanDoren, Ph.D. student in Mechanical Engineering 



Professor Il'insky and Academician Zabolotskaya, on leave from the Physics De- 
partment of Moscow University and from the General Physics Institute in Moscow, 
respectively, joined our acoustics group in September 1991. Professor Il'insky re- 
turned to Moscow in June 1992. Their main source of financial support was the 
David and Lucile Packard Foundation Fellowship for Science and Engineering. The 
graduate students received partial financial support from several funding agencies, 
as noted in the relevant sections. 

The following manuscripts and abstracts, which describe work supported at 
least in part by ONR, have been published (or submitted for publication) since 
1 August 1991. 

Refereed Journals 

• M. F. Hamilton and E. A. Zabolotskaya, "Nonlinear propagation of sound in 
a liquid layer between a rigid and a free surface," J. Acoust. Soc. Am. 90, 
1048-1055 (1991). 

• M. F. Hamilton, "Comparison of three transient solutions for the axial pres- 
sure in a focused sound beam," J. Acoust. Soc. Am. 92, 527-532 (1992). 

• C. M. Darvennes and M. F. Hamilton, "Additional remarks on parametric 
reception near a reflecting plane," J. Acoust. Soc. Am. (in press). 

• Yu. A. Il'insky, and E. A. Zabolotskaya, "Cooperative radiation and scatter- 
ing of acoustic waves by gas bubbles in liquids," J. Acoust. Soc. Am. (in 
press). 

• M. F. Hamilton, "A transient axial solution for the reflection of a spherical 
wave from a concave ellipsoidal mirror," J. Acoust. Soc. Am. (in review). 

• M. F. Hamilton, Yu. A. Il'insky, and E. A. Zabolotskaya, "On the existence 
of stationary nonlinear Rayleigh waves," J. Acoust. Soc. Am. (in review). 

Conference Proceedings 

• M. F. Hamilton, "A transient solution for the axial pressure field of a spark- 
source lithotripter," to appear in Proceedings of the 14th International Con- 
gress on Acoustics (Beijing, China, September 1992). 

Oral Presentation Abstracts 

• M. F. Hamilton, "An axial solution for the reflection of a spherical wave from 
a concave ellipsoidal mirror," J. Acoust. Soc. Am. 90, 2340 (1991). 

• T. W. VanDoren and M. F. Hamilton, "Water fountains produced by intense 
standing waves in air," J. Acoust. Soc. Am. 91, 2330 (1992). 



• Yu. A. Il'insky and E. A. Zabolotskaya, "Cooperative radiation of acoustic 
waves by gas bubbles in a liquid," J. Acoust. Soc. Am. 91, 2351 (1992). 

• D. E. Reckamp, E. A. Zabolotskaya, and M. F. Hamilton, "Propagation of 
finite amplitude sound in a waveguide with a parabolic sound velocity profile," 
J. Acoust. Soc. Am. 91, 2352 (1992). 

• M. A. Averkiou, Y.-S. Lee, and M. F. Hamilton, "Propagation of pulsed 
finite amplitude sound beams in a liquid with strong absorption," J. Acoust. 
Soc. Am. 91, 2455 (1992). 

• M. A. Averkiou and M. F. Hamilton, "Reflection of focused sound beams 
from curved surfaces," J. Acoust. Soc. Am. 91, 2470 (1992). 

Theses 

• D. E. Reckamp, "Propagation of finite amplitude sound in a waveguide with 
a parabolic sound velocity profile," M.S. Thesis, The University of Texas at 
Austin (May 1992). 

I.    Nonlinear Rayleigh Waves 

This work was performed by Yu. A. Il'insky, D. J. Shull, and E. A. Zabolotskaya. 
Additional financial support was provided by the Packard Foundation. Comput- 
ing resources were provided by The University of Texas System Center for High 
Performance Computing. 

Rayleigh waves are combinations of P waves (compressional waves) and S waves 
(shear waves) that propagate along free surfaces of elastic solids. Because their 
energy is confined within a layer having a thickness of approximately one wave- 
length, Rayleigh waves experience relatively small spreading losses as compared 
with unbounded P and S waves (i.e., cylindrical as opposed to spherical spread- 
ing). Rayleigh waves therefore transport energy from earthquakes and underground 
explosions over large distances in the earth, often several times around. Also, the 
ease with which Rayleigh waves can be generated and detected by electrodes on 
the surfaces of piezoelectric materials, and the fact that their propagation speed 
is independent of frequency, have led to the widespread use of Rayleigh waves for 
performing various analog signal processing functions (e.g., delay lines, filters, and 
Fourier transforms) at megahertz frequencies. 

A new theoretical model for the propagation of nonlinear Rayleigh waves has 
been developed recently by Zabolotskaya.1 The model is based on Hamiltonian 
formalism, and it yields a set of coupled equations that may be written in the 
dimensionless form 

TF + (T5 + 4.) Vn = 2n2 £   Cm<m-nVmV^_n - n2 £ C mVmVn.m     (1) 
dK      \2K J m=n+1 m=1 



where Vn is a complex spectral amplitude in a Fourier series representation of the 
velocity waveform, R is distance, An are frequency dependent attenuation coeffi- 
cients, and Cmn are nonlinearity coefficients that depend on the individual spectral 
interactions. Equation (1) applies to plane waves for m = 0 and to cylindrical waves 
for m = 1. Three investigations based on Eq. (1) are discussed in this section. 

The first investigation concentrates on the properties of harmonic generation 
in nonlinear Rayleigh waves. The previous analysis by Zabolotskaya1 focused on 
distortion of the time waveform. Quasilinear solutions have now been derived for 
second harmonic generation in plane and cylindrical Rayleigh waves that propagate 
in isotropic solids with arbitrary attenuation properties. The quasilinear solutions 
were used to derive expressions for the finite amplitude losses at the source fre- 
quency (following the very successful analysis by Merklinger for finite amplitude 
sound in thermoviscous fluids2). For brevity, we present here only the approximate 
analytical solutions for the source frequency component for the case of negligible 
small signal attenuation (i.e., for which losses occur mainly at the shocks): 

Vx   =      . m = 0       (plane) (2) 

S/R^IR 

y/l + 32C^Ro(VR-^y 
m = 1        (cylindrical) (3) 

The source is at R = 0 for plane waves and R = RQ for cylindrical waves. The 
above expressions are found to be in good agreement with the numerical solutions 
obtained from Eq. (1), even well into the shock wave region. Note that the source 
frequency components for both plane and cylindrical waves in the shock wave region 
(large R) are attenuated at the same rate (as R'1). Both plane and cylindrical 
Rayleigh waves are found to experience saturation, whereby the wave amplitude at 
a fixed field point no longer increases with source level for source levels sufficiently 
high that shock waves are produced near the source. 

In Fig. 1 is shown the distortion and eventual acoustic saturation of an initially 
monofrequency, planar Rayleigh wave in steel as a function of source level. The 
spectra and waveforms are normalized by their values at the source, and the field 
point is at a fixed distance from the source. Figures in the same row correspond to 
the same normalized source level Lo, and successive rows correspond to increasing 
source level. The first column reveals the harmonic generation that accompanies 
propagation as the source level is increased. The second column reveals the dis- 
tortion of the horizontal velocity waveform. At L0 = 30 dB the waveform exhibits 
the sawtooth profile that is characteristic of finite amplitude sound in fluids. At 
L0 = 40 dB, however, cusps appear at the beginning and end of the shock front. 
The peak amplitudes at these cusps generally exceed the amplitude of the source 
waveform. Since the depth penetration of a Rayleigh wave is inversely proportional 
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Figure 1: Predicted frequency spectra and time waveforms associated with the 
nonlinear distortion and acoustic saturation of a Rayleigh wave, as a function of 
source level. 



to frequency, the harmonic generation that accompanies waveform distortion tends 
to localize the total energy in the wave increasingly closer to the surface.1 When 
the source level is increased another 10 dB, to L0 = 50 dB, saturation has oc- 
curred, and the wave amplitude at the field point is now less than that at the 
source because of increased losses at the shocks. Further increase in source level 
merely increases these losses, but the profile of the waveform remains the same. In 
the third column are shown the vertical velocity waveforms (which are the Hilbert 
transforms of the horizontal velocity waveforms), and in the fourth column are 
shown the vertical displacement waveforms (which are the integrals of the vertical 
velocity waveforms). 

The second investigation examines whether stationary nonlinear planar Rayleigh 
waves [i.e., for which dVn/dR = 0 with m = 0 and An = 0 in Eq. (1)] can exist.3 

Their existence has been predicted by Parker and Talbot,4-7 who suggest that the 
nonlocal character of nonlinear Rayleigh waves provides a possible mechanism for 
the existence of nondistorting waveforms. Parker and Talbot used numerical solu- 
tions of a model equation that is similar in form to Eq. (1) to support the proposed 
existence of nonlinear Rayleigh waves. However, we have found that results based 
on Eq. (1) with dVn/dR = 0 and m = 0 do not support their conclusions. 

Figure 2(a) shows a typical computed "stationary" spectrum which was limited 
to N = 50 harmonics. The corresponding horizontal velocity waveform is shown 
in Fig. 2(b) (which reveals Gibbs oscillations due to the abrupt truncation of the 
frequency spectrum). If N can be chosen sufficiently large that no further increase 
in N introduces a change in either the spectrum or the waveform, then one may 

claim that a stationary waveform has been identified numerically (this was the pro- 
cedure followed by Parker and Talbot). However, this limit can never be achieved, 
as was proved both analytically and numerically in Ref. 3. For example, doubling 
N to 2N will produce a spectrum with exactly the same spectral envelope as in 

Fig. 2(a) (when renormalized to the harmonic scale 1 to 2N) but with twice the 
spectral density. In other words, there will still be three "spectral nulls," but they 
will now be evenly spaced between the first and hundredth harmonic, rather than 
the first and fiftieth. The waveform obviously changes in this case (the pulse-like 
shape of the waveform becomes narrower because of the higher frequency content). 
In conclusion, a stationary wave solution cannot be obtained on the basis of Eq. (1). 

The investigation of stationary waves is completed and the results have been 
submitted for publication.3 The work associated with Fig. 1 will be submitted for 
publication, and it is currently being extended to diffracting Rayleigh wave beams. 

The third investigation produced a major new result. In particular, a method 
was discovered by which Eq. (1) can be rewritten in the time domain as an evolution 
equation (analogous to the Burgers equation for finite amplitude sound in fluids). 
This work is still in progress, and therefore details will be presented in the Fifth 
Annual Summary Report (i.e., next year). Here, we identify only the main features 
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Figure 2: Numerical solution for a stationary wave with three spectral nodes, for 
m = An = 0 and N = 50: (a) frequency spectrum and (b) horizontal velocity 
waveform. 

of the result. The nonlinearity coefficient matrix may be written as the summation1 

Cmn — Cmn + ^mn + ^*mn- Each of the three terms alone produces nonlinear 
distortion effects which lead to waveforms having the same profiles as in Fig. 1. 
The nonlinear evolution equation associated with the third term is the easiest to 
derive, and it is given in dimensionless form by 

dD     mD        &D 
dR+ 2R      ar2 + (!-•*) 

dDdD'     ^PD 
+ D 

dT &T dT1 ) (4) 

where D* is the complex conjugate of the displacement variable D, T is time, A 
is an attenuation coefficient, and H is the Hilbert transform operator. The real 
part of the complex function D is proportional to the horizontal component of 
the particle displacement, and the imaginary part is proportional to the vertical 
component. A computer program has been written to solve Eq. (4), and the results 
are indistinguishable from those obtained by solving Eq. (1) with Cmn = C^n and 
An =n?A1. It can be shown that when the Burgers equation is rewritten in terms 
of the complex displacement variable D, the result is identical in form to Eq. (4) 
apart from the absence of the term D^D'/dT2). This term accounts for the 
nonlocal nonlinearity associated with Rayleigh waves (which is responsible for the 
cusping near the shocks in the horizontal velocity waveforms in Fig. 1). 

II.    Finite Amplitude Pulses in Liquids with Strong Ab- 
sorption 

The numerical work for this project was performed by Y.-S. Lee, the experimen- 
tal work by M. A. Averkiou. Additional financial support was provided by the 
Packard Foundation and the National Science Foundation. Computing resources 
were provided by The University of Texas System Center for High Performance 
Computing. 



The numerical work by Lee was described briefly in the Third Annual Summary 
Report8 under the present ONR grant, and subsequently reported in the Proceed- 
ings of Ultrasonics International 91.9 The following abstract appeared at the May 
1992 Meeting of the Acoustical Society of America in Salt Lake City:10 

Measurements of intense acoustic pulses generated by directive sources 
in a liquid with strong absorption are compared with theoretical predic- 
tions based on a time domain numerical solution of the KZK nonlinear 
parabolic wave equation [obtained previously by Lee and Hamilton9]. 
The computer program is useful for describing the propagation of tone 
bursts with various amplitude and frequency modulations. Experiments 
were performed in glycerin with narrowband pulses having center fre- 
quencies of several megahertz. The pulses experience self-demodulation 
that leads to farfield waveforms characterized by the low frequency 
envelope, as predicted by the asymptotic theory of Berktay.11 Good 
agreement between theory and experiment was obtained for amplitude 
modulated tone bursts, not only at farfield axial positions as achieved 
first by Moffett et al.,12 but also off axis, throughout the transition re- 
gion and into the nearfield. The effects of frequency modulation are 
also discussed. 

An acceleration under this ONR grant provided for the purchase of a LeCroy 
9112 arbitrary function generator (12 bits dynamic range, 20 nsec/point output 
rate). This high precision function generator has made possible a detailed study of 
nonlinear effects in pulsed sound beams. An example of experiment and theory is 
presented in Fig. 3. The pulse has a center frequency of 3.5 MHz and was produced 
with a 1.3 cm diameter source. Glycerin was selected as the medium because of 
its high absorption (approximately 6 dB/cm at 3.5 MHz), which is required to 
investigate self-demodulation within the dimensions of the ultrasonic tank facility 
in the Mechanical Engineering Department. The decibel levels cited next to each 
waveform indicate level relative to that at the source, and the dimensionless dis- 
tance a = z/zQ is in terms of the Rayleigh distance z0 at 3.5 MHz. Results from 
theory and experiment are seen to be in outstanding agreement, which attests to 
the precision of both the Mechanical Engineering tank facility and the numerical 
code. The slight asymmetry of the final experimental waveform is attributed to 
slight asymmetry in the response of the source transducer (namely, the ringing 
associated with the high Q), which was not taken into account in the theoretical 
predictions. The results in Fig. 3 represent the first instance in which theory and 
experiment for self-demodulation have been compared at distances before the final 
demodulated waveform (in the bottom row) has been established. 

8 
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Figure 3:   Comparison of theory and experiment for the self-demodulation of a 
3.5 MHz tone burst in glycerin. 



III.     Reflection of a Focused Beam from a Curved Target 

This work was performed by M. A. Averkiou, who received additional financial 
support from the Packard Foundation and the National Science Foundation. The 
work was reported at the May 1992 Meeting of the Acoustical Society of America 
in Salt Lake City.13 The abstract of that presentation follows: 

The reflection of focused sound beams from surfaces with spherical 
curvature is investigated theoretically and experimentally. Theoreti- 
cal predictions for the incident and reflected beams are based on the 
parabolic wave equation. A circular source with a uniform amplitude 
and quadratic phase distribution is assumed. Solutions for the reflected 
beam are derived for both pulsed and continuous sources. The experi- 
ments were performed in water with a 3.5 MHz source that has a nomi- 
nal radius of 2.5 cm and focal length of 15 cm. Accurate measurements 
of the incident beam, particularly very near the source, were used to 
characterize the effective radius and focal length. Reflection from both 
convex and concave surfaces was investigated. The targets were made 
of nickel with radii of curvature that vary from 5 cm up to infinity (pla- 
nar targets). Measurements of the reflected beam were obtained with 
a needle hydrophone that passed through a small hole in the center of 
the source. Agreement between theory and experiment is excellent, and 
the results suggest novel ways to measure surface curvature. 

The theory is based on a solution for the reflection of a pulsed, focused sound 
beam from a rigid spherical target. For simplicity, we present here only the solution 
for the case in which the axis of the beam passes through the center of the target: 

n /-  - /(r) - fjT - TV) 
Pr/Po -  1_z/d + 26_1(z _ Zr)(1 _ Zr/d) W 

where po is the pressure amplitude at the source, /(t) is the source waveform, 
T = t — Z/CQ is retarded time in terms of the coordinate z along the axis of the 
beam, d is the focal length of the source, 6 is the radius of curvature of the target, 
z = zT is where the axis of the beam intersects the target, and 

J_ (l-2/d + 2b-\z-zT)(l-zr/d)\ 
T     2co\ z + 2b-lzr(z-zr) ) K } 

where a is the source radius. The solution is written in terms of an "unfolded 
geometry," in which the beam is assumed to propagate in the positive z direction 
following reflection from the target. This geometry also facilitates the presentation 
of data. For example, for a planar target (b = oo) the solution for pr reduces to the 
freefield solution for a focused beam in the parabolic approximation. Modification 
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of Eq. (5) to account for a geometry in which the center of the target does not 
coincide with the beam axis is straightforward. 

Shown in Fig. 4 are comparisons of theory with experiment for the amplitude of 
a sinusoidal source waveform that is reflected from either a convex target (6 = +d) 
or a concave target (b = —d). The experiment was performed in water, and the 
reflected pressure was measured in the center of the source, which corresponds to 
the location z = 1zT (i.e., twice the round trip distance from the source to the 
target). The receiver consisted of a small needle hydrophone inserted in the center 
of the source (the source radius was a = 2.5 cm, and its focal length was d = 
15.2 cm). The vertical axes in Fig. 4 correspond to pressure amplitude (maximized 
by its maximum value), the horizontal axes to the distance between the source 
and the target. If the target were planar, the received pressure amplitude would 
be maximized with a source/target separation given by zr/d = 0.5, i.e., when the 
target is one half focal length away from the source (because the received signal has 
traveled a round-trip distance d). The arrows in the figure indicate this position 
and provide a point of reference for comparison with results for curved targets. For 
the concave target (6 = — d), the maximum is measured at zTjd < 0.5 (because 
the target enhances the focusing effect and thus causes the beam to focus within 
a shorter distance, i.e., the net focal length decreases). For the convex target 
(6 = +d) the maximum is measured at zr/d > 0.5 (because the target defocuses 
the beam and thus increases the net focal length). Theory and experiment are 
seen to be in very good agreement. The oscillations in the response curves are 
due to diffraction, specifically, the interference of the center wave and edge wave 
radiated by the source. These contributions are represented by the two terms in 
the numerator of Eq. (5). 

5 

o 

1.2 

0.8 

0.4 

0.0 

b-+d 
f\ convex 
/   \ target 

0.4     0.6     0.8     1.0     1.2    1.4 
zr/d t zr/d 

Figure 4: Comparison of linear theory and experiment for the reflection of a focused 
sound beam from either a concave target (b = — d) or a convex target (d = +6). 
The point receiver is mounted in the center of the source transducer. 

The experiments reported here will be extended to the more general case of 
transmission and reflection at a curved fluid-fluid interface, for both finite ampli- 
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tude as well as for small signal sound beams. 

IV.    Finite Amplitude Propagation in a Sound Velocity Chan- 
nel 

The personnel working on this project were Ensign D. E. Reckamp, USN, and E. A. 
Zabolotskaya. The main financial support for Reckamp was provided by an Applied 
Research Laboratories Naval Academy Scholarship. Reckamp reported this work 
in his M.S. thesis.14 He received an M.S. degree in Mechanical Engineering in May 
1992. Apart publication of the results in a journal article, this project is completed. 
Additional financial support was provided by the Packard Foundation. 

Background on the project is discussed in the Third Annual Summary Report8 

under the present ONR grant. The results were presented at the May 1992 Meet- 
ing of the Acoustical Society of America in Salt Lake City. The following is the 
abstract15 that accompanied the presentation: 

The propagation of finite amplitude sound in a waveguide with a para- 
bolic sound velocity profile is investigated theoretically. It is assumed 
that the primary wave propagates in a single mode at a frequency that is 
large compared with the cutoff frequency. The acoustic energy is there- 
fore concentrated near the axis of the sound channel. Both the primary 
wave and the nonlinearly generated second harmonic component have 
mode shapes that are described by Gauss-Hermite eigenfunctions. For a 
primary wave in mode m, the second harmonic component is generated 
in all even order modes up to 2m, with most of the energy contained in 

mode 2m. A nonlinear Schrodinger equation is derived for the envelope 
of a narrowband pulse that propagates in a single mode. Analytical 
expressions are derived for the coefficients in the Schrodinger equation, 
and it is found that only dark envelope solitons can propagate without 

distortion in the waveguide. 

The mode shapes of the second harmonic component were presented in the Third 
Annual Summary Report.8 Below, we present the general results. 

The governing wave equation is the following modified Westervelt equation: 

Mi-")S- '  ^ (T) 
poc4, dt2 

where z is depth in the water column and /i characterizes the curvature of a para- 
bolic sound velocity profile about the waveguide axis at z = 0 (see Fig. 5). This 
sound speed profile is frequently used to model the SOFAR channel. The limita- 
tions of Eq. (7) are that the acoustic wavelengths must be short compared with 
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Figure 5: Coordinate system for the parabolic sound velocity channel. 

the characteristic dimension of the channel (i.e., the effective width of the waveg- 
uide), and that the sound must be trapped near the waveguide axis (which means 
the source frequency must be several times the cutoff frequency). If it is further 
assumed that the primary sound field consists of a single frequency u and propa- 
gates in a single mode m, the following quasilinear solutions are obtained for the 
fundamental (pi) and second harmonic (p?) pressure components: 

=   poe-^2/2JMz^)eiM~fcmX) (8) 

=   ^e-^^ (*V^) sin [(«m - Jfcm) x] <*-(-+*•>•>       (9) 

where Jbm is the wavenumber of the fundamental component, 2nm is the axial 
wavenumber of a freely propagating second harmonic component, and Hm is the 
Hennite polynomial of order m. The expression for p\ is well known,16 whereas 
the expression for pi is new. Because the fundamental and second harmonic com- 
ponents propagate at different speeds in the waveguide (km ^ «m), the amplitude 
of the second harmonic component experiences spatial beating. The spatial peri- 
odicity of the beating is 7r/(«;m - km) a 47r//iCo. The expression for p? is a single 
mode approximation. The full expression for pi includes m +1 modes, i.e., all even 
modes from 0 through 2m. However, it was discovered that most of the energy is 
contained in the highest mode, 2m, which provides justification for the single mode 
approximation. 
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The propagation of narrowband pulses was also considered. The expression for 
a narrowband pulse that propagates in a single mode may be written 

p, = a(x, r)e-^z3'2Hm (2V7^) e*"0'-*"*) (10) 

where u>0 is the center frequency of the pulse, a is the pulse envelope function, 
r = t — x/Cg is a retarded time, and cg the group velocity of the pulse. A nonlinear 
Schrodinger equation (NLS) can be derived for waveguides:17 

£+&£+**.-, (u, 
where k'^ = cPkm/du>l. The NLS predicts the existence of envelope solitons, bright 
solitons if A/fcJJ, > 0 or dark solitons if A/fc{J, < 0. The case A/fcJJ, < 0 also indicates 
that localized energy packets (i.e., which vanish asr-» ±oo) will disperse as they 
propagate. An analytical expression was derived for the ratio A/fc^ in the single 
mode approximation for the second harmonic component:14 

_A v/2(2m)!/?2u>0
5(l-u;m/u>o) 

fc£ 2*»(m!)»(2m + Xf^fpltf 
(12) 

where wm is the cutoff frequency for the pulse (u;0 > u>m is assumed). This ex- 
pression is always negative, which means that bright solitons cannot exist in this 
waveguide, and pulses will disperse as they propagate. 

V.     Second Harmonic Generation in Pekeris Waveguides 

This work was performed by C. E. Bruch, Yu. A. Il'insky, and E. A. Zabolotskaya, 
who each received additional financial support from the Packard Foundation. Fur- 
ther background information on this project may be found in the Third Annual 
Summary Report.8 

The Pekeris18 waveguide model consists of two liquid layers having different 
sound speeds. The upper layer (0 < z < h\) is bounded above by a free surface 
at z = 0 and below [z > hi) by & second, penetrable layer. The lower layer is 
usually assumed to have infinite depth (/i2 = oo). When the sound speed in the 
lower layer exceeds that in the upper layer (c2 > Ci, where the index 1 refers to the 
upper layer and the index 2 to the lower layer), guided wave propagation can exist 
in the upper layer. This is the situation for sea water over sediment. Although the 
Pekeris waveguide model has been widely used to study the acoustics of shallow 
ocean channels in the small signal approximation,16 no analyses have been reported 
on finite amplitude effects. Here we present preliminary results for second harmonic 
generation in a Pekeris waveguide. 

In the course of the investigation, it proved useful to consider a slightly modified 
version of the Pekeris waveguide model. In particular, a lower layer of finite, rather 
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than infinite, depth was assumed (/ii < h2 < oo). The reason for this assumption 
is that the sound field in an infinite domain (h2 = oo) must be described with a 
continuous spectrum of modes (plus a discrete spectrum that corresponds to the 
upper layer), whereas a field in a finite domain consists of only a discrete spectrum 
of modes. The continuous spectrum is frequently ignored, because it contributes 
significantly to the acoustic field only very near the source.16 However, analysis 
of second harmonic generation requires careful consideration of the field near the 
source, in particular, to properly match the source condition. As a practical matter, 
matching the source condition analytically is more easily achieved when the modes 
form a discrete rather than a continuous spectrum. For the case of trapped wave 
propagation in the upper layer, in which acoustic penetration in the lower layer 
is restricted to within approximately one wavelength beneath the interface, it was 
found that the thickness of the lower layer need only be on the order of the thickness 
of the upper layer (h2 ~ 2/ix) to simulate an ideal Pekeris waveguide (h2 = oo). 

Mode Shape 
(m=1,Q=14.5) 

Mode Shape 
(m=2, Q=32.6) 

Mode Shape 
(m=3, fl=50.7) 

Second Harmonic 
Particular Solution: Linear Solution: 

Figure 6: Predicted fundamental and second harmonic mode shapes (dashed and 
solid lines, respectively) in a Pekeris waveguide formed by sea water over sediment. 

In Fig. 6 are shown mode shapes corresponding to second harmonic generation 
(solid lines) by a primary wave (dashed lines) that propagates in mode m = 1, 
2, or 3 in a layer of sea water over sediment (ci/c2 = 0.86, pi/pi = 0.5).   The 
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bottom of the lower layer (h2 = 2hi) is assumed to be perfectly rigid. Only the 
forced component (the particular solution) of the second harmonic wave is shown 
in the figure. The dimensionless source frequency Q = uci/hi increases with mode 
number in such a way as to maintain a constant angle of incidence between the 
water-sediment interface and the propagation directions of the plane waves that 
constitute the mode at the source frequency. This angle is 6 = 10°. The critical 
angle for this case is 9C = 30°, which means that total internal reflection occurs in 
the upper layer, and the primary wave is trapped. The main observation is that 
the penetration depth of the nonlinearly generated second harmonic component 
is slightly less than at the source frequency. Otherwise, the properties of second 
harmonic generation due to a primary wave trapped in the upper layer of a Pekeris 
waveguide are similar to those for the case in which the sound in the upper layer 
is trapped by a rigid surface at z = h\}9 For example, second harmonic generation 
is slightly more efficient near the free surface than near the fluid-fluid interface. 

VI.     Finite Amplitude Propagation in Multiple Waveguide 
Modes 

This work was performed by T. W. VanDoren, who received additional financial 
support from a Rockwell Fellowship and the Packard Foundation. Preliminary 
work on the project was discussed in the Third Annual Summary Report.8 

The waveguide investigations described in the previous two sections of this 
report (Sees. IV and V) are based on the assumption that the primary wave propa- 
gates in only one mode, which results in a tremendous simplification of the analysis. 
Except in carefully designed experiments, however, this is usually not the case, and 
the primary wave propagates in a variety of modes. The purpose of the present 
investigation is to consider how the propagation of a primary wave in more than 
one mode affects harmonic generation and shock formation. The analysis proceeds 
as follows. First, a quasilinear analytical solution of a Westervelt nonlinear wave 
equation is derived for second harmonic generation in a rectangular duct with rigid 
walls, with the primary wave propagating in an arbitrary number of modes. Sec- 
ond, the corresponding quasilinear solution is derived on the basis of the parabolic 
(KZK) approximation of the nonlinear wave equation. Third, if these solutions 
(Westervelt and KZK) compare well with each other and with experiment, then 
existing computer programs for solving the fully nonlinear KZK equation will be 
modified for application to guided wave propagation.20'21 The numerical solutions 
can be used to predict third and higher harmonic generation, as well as shock for- 
mation. Moreover, pulsed sound in waveguides can then be explored. Although a 
numerical solution of a KZK-type equation for guided finite amplitude sound has 
already appeared in the literature,22 we feel that a careful analysis, based on both 
analytical solutions and experiment, is needed to justify this approach. 
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Theory vs. Experiment 
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Figure 7: Comparison of quasilinear theory for second harmonic generation (solid 
lines) with experiment for a 33 kHz piston source in an air-filled rectangular waveg- 
uide. 
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Quasilinear analytical solutions for second harmonic generation by a primary 
wave in multiple waveguide modes were derived from both the Westervelt and KZK 
equations. The solutions are too cumbersome to present here. An experiment was 
performed in which the fundamental, second and third harmonic components were 
measured in an air-filled rectangular duct. The transverse dimension of the duct is 
6.6 cm, and it was excited with a centered 3.3 cm, 33 kHz source that (in theory) 
produced sound in four propagating modes. The second harmonic should then 
be generated in only two propagating modes for this geometry. The results, both 
theory (based on the Westervelt equation with ad hoc attenuation coefficients) 
and experiment, are shown in Fig. 7. The agreement for the fundamental and 
second harmonic components, in terms of general properties, is very reasonable. 
No analytical solution for the third harmonic component was derived. Theoretical 
description of this component will be based on a numerical solution of the KZK 
equation. 

VII.     Cooperative Radiation and Scattering of Sound by- 
Bubbles 

Work on this project was performed by Il'insky and Zabolotskaya, who received 
additional financial support from the Packard Foundation. This research is now 
completed, and a journal article has been accepted for publication in the Journal 
of the Acoustical Society of America.23 The results have also been presented at the 
May 1992 Meeting of the Acoustical Society of America in Salt Lake City.24 The 
following is the abstract from that meeting: 

The process of cooperative radiation of acoustic waves by radial bubble 
oscillations is investigated theoretically. In addition to instantaneous 
bubble interaction,25 we have also taken into account the interaction 
due to acoustic radiation. Numerical results for the acoustic intensity 
produced by 10 bubbles that pulsate in water with random initial phases 
are presented. Mutual bubble interaction causes synchronization of 
the bubble pulsation phases, which gives rise to collective radiation. 
The phenomenon is not as strong as in optics. In order to ensure 
superradiance by 10 bubbles, the radial oscillations of the bubbles must 
have amplitudes of the order of their initial radii. 

The details of this work are summarized by the following (modified) excerpts 
from the forthcoming journal article.23 

It is known that distributions of gas bubbles produce dramatic changes in the 
properties of a liquid. In particular, bubbles introduce strong nonlinearity and 
dispersion. Bubble oscillations result in the radiation of acoustic waves, and their 
contribution to ocean noise and sound scattering is substantial.16 
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The aforementioned phenomena are usually analyzed with the Rayleigh equa- 
tion for single bubble pulsations. Cooperative effects are not taken into account, 
apart from the bubble contribution to the coherent part of the acoustic field that 
arises during sound propagation through a quasi-homogeneous mixture of a liquid 
with bubbles. This is the usual model of a two-phase homogeneous medium. The 
present work constitutes a theoretical analysis of the collective radiation and scat- 
tering of sound by bubbles. A new feature of the analysis is the inclusion of a term 
that takes into account the bubble interaction through the radiation field. 

The following coupled dimensionless equations were derived to describe the 
volume oscillations of a collection of bubbles with a distribution of radii: 

dVn 
dT 

= j6nVn-jTn\Vn\
2Vn-Y/Vm (13) 

where Vn is the (dimensionless) volume of the nth bubble, T is time, 6n accounts for 
the frequency shift connected with instantaneous bubble interaction through the 
radiation field and the deviation of the bubble oscillation frequency from the mean 
frequency that characterizes the given bubble distribution, Tn is a coefficient that 
accounts for both quadratic and cubic nonlinearity, and the summation represents 
bubble interaction through the radiation field. 

0.75 

0.5 

0.25 

Figure 8: Intensity of sound radiated by ten oscillating bubbles as a function of 
time, based on (a) linear and (b) nonlinear theory. The standard deviation of the 
bubble radius distribution is a. 

The results of integrating Eqs. (13) are shown in Fig. 8. A field of 10 bubbles was 
assumed, the initial pulsation amplitudes of which were assumed to be equal. The 
initial phase of each bubble is arbitrary, and the phase distribution (corresponding 
to values of 8n) was assigned randomly according to the standard deviations a — 
0,2,4,6. The vertical axes in Fig. 8 represent I = | £ Vn |

2/n, which is proportional 
to the radiation intensity. Figure 8(a) pertains to a linear (r„ = 0) solution of 
Eqs. (13), Fig. 8(b) to a nonlinear (Tn = 10) solution. Note that in the linear case, 
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Fig. 8(a), the intensity does not decay monotonically with time when there is a 
distribution of bubble sizes. Localized intensity maxima occur when the bubbles 
momentarily oscillate in phase as a result of their different resonance frequencies. 
In the nonlinear system, Fig. 8(b), the localized intensity maxima are an order of 
magnitude greater than in the linear case. This nonlinear acoustical phenomenon is 
the analog of superradiance in nonlinear optics. To achieve nonlinearity designated 
by Tn = 10, however, the bubbles must pulsate with volume amplitudes that are 
of the order of their initial volumes. It is therefore unlikely that a superradiance 
pulse will be observed in acoustics via bubble interations in liquids. 

The main conclusion of this work is that cooperative effects should be taken into 
account when there are many bubbles in the liquid and they are sufficiently close to 
each other to interact. Nonlinear effects cause the bubble oscillation frequencies to 
depend on pulsation amplitudes, which leads to phase matching and a phenomenon 
analogous to superradiance in optics. 

VIII.     Water Fountains Produced by Intense Standing Waves 
in Air 

This work was primarily experimental and was performed by T. W. VanDoren. 
VanDoren received additional financial support through a Rockwell Fellowship and 
from the Packard Foundation. The following abstract26 from an oral presentation 
at the May 1992 Meeting of the Acoustical Society of America in Salt Lake City 
summarizes the motivation for this work. 

An acoustics demonstration found in several science museums involves 
a horizontal standing wave tube which contains a shallow layer of liq- 
uid. When the liquid is water and the sound pressure level of a stand- 
ing wave in the air above the water exceeds approximately 160 dB (re 
20 /xPa) at frequencies below 1 kHz, vigorous fountains occur at the 
nodes in the pressure field. The introduction of a surfactant in the 
water causes clusters of fountains to appear near the nodal planes at 
somewhat lower sound pressure levels. Standard quasilinear theory pro- 
vides a reasonable description of the acoustic streaming and dc pressure 
in the air prior to the appearance of fountains. The fountains seem to 
result from the ejection of droplets by inner streaming vortices that are 
formed above the air-water interface. The water fountains and stream- 
ing patterns are discussed in relation to Andrade's observations27 of 
solid particulate motion produced by intense standing waves in air. 

The presentation was accompanied by a videotaped visualization of the acoustic 
streaming in the standing wave tube. A half cylinder on one wall of the tube, 
rather than the small modulations produced by the surface of the water, was used 
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to enhance the streaming. The vizualization was performed with a laser and smoke 
particles. However, the inner streaming vortices that are believed to be responsible 
for the water fountains could not be vizualized with this technique, and only the 
outer streaming vortices were readily viewed. Laser doppler velocimetry was used 
to confirm the existence of the inner streaming layer. Whereas acoustic streaming 
patterns of this type (i.e., inner and outer circulations near boundaries) are well 
known,28 as are water fountains produced by standing waves in air (they may be 
found in several science museums), the suggestion that the fountains are driven by 
streaming has not, to our knowledge, been discussed previously in the literature. 

IX.     Spark-Source Lithotripter Pulses 

This work was performed mainly during the 1990-91 reporting period, as described 
in the Third Annual Summary Report8 under the present ONR grant, but the 
comparisons of theory and experiment shown below are new. The project is now 
completed, and an article has been submitted for publication in the Journal of the 
Acoustical Society of America.29 This work was also presented at the November 
1991 Meeting of the Acoustical Society of America in Houston,30 and it is scheduled 
for presentation at, and publication in the proceedings of, the 14th International 
Congress on Acoustics to be held in Beijing in September 1992.31 Additional finan- 
cial support was provided by the Packard Foundation. 

The results may be summarized with the following abstract from the submitted 
journal article:29 

A transient solution is derived for the reflected pressure field along the 
axis of symmetry of a concave, axisymmetric, ellipsoidal mirror. The 
incident field is a spherical wave produced at the near focus of the 
mirror. Short wavelengths in comparison with the minimum radius of 
curvature of the mirror, and lossless, small signal propagation in a ho- 
mogeneous fluid are assumed. The pressure at the far focus is given 
by a simple analytical solution, and elsewhere along the axis by a con- 
volution integral. The results constitute a generalization of the theory 
developed for spherical mirrors by Cornet and Blackstock.32 Applica- 
tion to waveforms produced by spark-source lithotripters is discussed, 
and comparisons are made with measurements reported by Miiller.33 

The axial solution for the reflected pressure p? can be written in the form 

£ = Hc(z)f(rc) + He(z)f(re) + Si T Hw{z,t')f(t - t')dt' (14) 
Po a J*\ 

where po is the pressure amplitude and f(t) the time dependence of the source 
waveform.   The first term is associated with the center wave, the second term 
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with the edge wave, and the third term with the wake. The corresponding impulse 
response functions Hc, He and Hw are defined in Refs. 29 and 31. 

For the calculations in Fig. 9 we considered a half ellipse with eccentricity 
e = 0.7 (and therefore a far focus at z/a = 0.7). The source waveform f(t) is shown 
in Fig. 9(a). The parameters approximate those of an experiment performed in 
water by Miiller,33 whose measured waveforms (reproduced from Fig. 4 of Ref. 33) 
at three axial locations (z/a = 0.47, 0.75, and 0.93) appear in the left column 
of Fig. 9, opposite the corresponding theoretical predictions based on Eq. (14). 
Miiller used a Dornier XLl lithotripter, and the duration of his incident pulse was 
approximately T = 4 /xsec. The pairs of vertical dashed lines in Figs. 9(c)-9(e) 
identify the approximate beginnings and ends of the oscilloscope traces in the left 
column. The label C in the figures identifies the beginning of the center wave, E 
identifies the beginning of the edge wave, and W identifies the most pronounced 
contribution due to the wake. 

At z/a = 0, the center wave and edge wave are well separated, and the wake 
produces a slight negative pressure immediately following the center wave. At 
z/a = 0.47 the center wave and edge wave are still clearly resolved. Comparison 
of Fig. 9(c) with the oscilloscope trace to the left indicates that the small negative 
pressure at the end of the measured waveform is evidently due to the wake rather 
than the edge wave. The oscilloscope trace appears to end prior to the arrival of the 
edge wave. At z/a = 0.75, just beyond the far focus, the center wave and edge wave 
overlap, and the wake produces a large positive pressure. However, the predicted 
waveform in Fig. 9(d) appears backwards in comparison with the corresponding 
measured waveform. This reversal is probably due to nonlinear effects introduced 
by the large peak pressure, which is approximately 800 bar (80 MPa). Nonlinearity 
would cause point W in Fig. 9(d) to catch up with point E and thus produce 
a waveform more like that which was measured. Note also that the amplitude 
ratio of point W in Fig. 9(d) to point C in Fig. 9(c) matches the ratio of the 
corresponding measured peak pressures. At z/a = 0.93, both the measured and 
predicted waveforms possess a horizontal plateau that follows the arrival of the 
edge wave (E), leading to a spike produced by the wake (W) in the middle of the 
waveform. Again, nonlinear effects would cause point W in the predicted waveform 
to advance in time relative to point E. Although the predicted amplitude ratio of 
point W to point E matches the measured ratio, the predicted negative pressure 
due to the center wave is much greater than was measured. At z/a = 2, the edge 
wave has separated from the center wave, and the effect of the wake is reduced. 
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Figure 9:    Comparison of present  theory  (right  column)  and experiment for 
lithotripsy pulses measured in water by Muller.33 
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